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Determination of dynamical critical exponents from hysteresis scaling

G. P. Zheng and J. X. Zhang
Department of Physics, Zhongshan University, GuangZhou 510275, People’s Republic of China

~Received 17 February 1998!

A method is proposed to determine the dynamical critical exponent. The method is based on the scaling for
dynamical hysteresis resulted from a linearly swept field. We prove that in modelA dynamical hysteresis
scaling at critical temperature is universal. The nearest-neighbor Ising models are used to demonstrate such
concepts and the dynamical critical exponents can be determined accurately. We also propose a universal
relation between static and dynamical critical exponents in Ising class in single-spin-flip dynamics.
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PACS number~s!: 64.60.Ht, 75.60.Ej, 75.40.Gb
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In the past two decades, dynamical critical phenomen
classical spin systems were extensively studied@1#. Determi-
nation of dynamical critical exponentz play an important
part of these studies. Though static critical exponents ca
determined accurately by renormalization-group theory@2#,
the renormalization-group method in dynamical version
some difficulties in calculating the dynamical critical exp
nentz,even in evaluatingz of a two-dimensional Ising mode
@4#. In brief, the methods that had been used to estimate
value ofz might include the following: high-temperature e
pansion@3#, dynamical renormalization-group methods@4#,
Monte Carlo simulations@5#, and nonequilibrium relaxation
analysis@6#. For nearest-neighbor Ising system with ferr
magnetic interaction in two-dimensional lattice, the valu
obtained from the methods mentioned above cover the ra
from 1.73 to 2.34@3–6#. Moreover, for such Ising system
on fractal structures with infinite ramification@7#, z can
hardly be calculated because of the uncertainty of the
namical recursive relation@8#. Therefore, the value of dy
namical critical exponent of Ising system is still an op
question.

Some reasons may be accounted for the systematic e
appeared in the above-mentioned estimates, e.g., long-
tail in finite system and the critical slowing down@9#. Such
difficulties can hardly be overcome by simulational metho
Recently, two simulational studies have been given to ev
ate the dynamical critical exponent, in two-dimensional Is
model. Both methods depended on the dynamical scal
for some thermodynamic quantities in short-time region. O
of them @10# was based on the scaling of initial growing
magnetization@11#. The z exponent determined in Ref.@10#
by means of Monte Carlo~MC! simulation isz52.132. Un-
fortunately, during the heat-bath MC simulation, the init
magnetization, which is inversely proportional to the char
teristic time of the growing region of the evolving proces
must be zero and the initial configuration should be w
prepared, otherwise the early time scaling relation collap
But in such cases the short-time region overlaps with
long-time region. The other method@12# was free from the
effect of initial condition and was based on the scaling
particular quantities that are independent of system sizz
52.16 was given by this approach. However, the sca
quantities, pertained to internal ones, and could not ma
with bulk variables of the systems~e.g., magnetization!. This
may prevent it from confirming by experiments. On the oth
PRE 581063-651X/98/58~2!/1187~4!/$15.00
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hand, the quantities constructed in this method need q
many statistical samples for nonequilibrium averaging.

We propose here a method to determine thez exponent by
means of hysteresis scaling. Since Tome and de Oliviera@13#
used mean-field type kinetic Ising model to study the d
namic phase transition under cosine external field, the c
cept of hysteresis scaling and its universality in Ising mod
@14# under periodic field had been proposed and extende
other phenomenological models@15#. Unfortunately, a uni-
versal relation for the scaling exponents is still absent. In t
Rapid Communication, dynamic hysteresis response cau
by a linearly swept field is studied. We show that at critic
temperature, the area of hysteresis loopA can be scaled with
respect to the sweeping rateh of the field:A5g(TC)hb, and
b depends on the static and dynamical critical expone
Finite-size scaling forA is used to determinez accurately,
using standard MC simulations. This method may lead to
following advantages. First, the system will begin with a
spins up and evolve toward the configuration of all sp
down under a large-amplitude unfavorable field. The scal
relation and exponent will be independent of the initial co
dition. Second, long-time tail and critical slowing down ca
both be dramatically refrained due to the applying fie
Third, the simulation result may be able to be compared w
experiments of dynamical hysteresis measurements. De
dence of the areas of hysteresis loop on the rates of a sw
ing field had been reported, in hysteresis measurement
ferromagnet and ferroelectric sample@16#.

Now we analyze the field-theoretic model with scalar o
der parameter fieldf~x!, Landau-Ginzburg Hamiltonian is
given by @17#

H5E ddxS r

2
f2~x!1

g

4!
f4~x!2

H

kBT
f~x!

1
1

2
@¹f~x!#2D , ~1!

where r ,g.0 are coefficients. Herer 5K2Kc with K
}1/kBT, T is the temperature andkB the Boltzman constant
The system described by Eq.~1! has a first-order phase tran
sition ~FOPT! driven by the external fieldH. To study the
kinetics of FOPT atr'0, we start from the Langevin equa
tion
R1187 © 1998 The American Physical Society
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]

]t
f~x,t !52l

dH~f!

df
1j~x,t !, ~2!

wherej is Gaussian white noise with the following correl
tions:

^j~x,t !j~x8,t8!&52kBTld~x2x8!d~ t2t8!, ~3!

with l the dynamic constant. Following the field theoretic
treatment for stochastic process by means of path inte
description@17#, we can use the perturbational expansio
near the critical fixed pointTc ~the Curie point!, and safely
arrive at the following equations up to one-loop order@18#:

d

dt
M ~ t !52l@r 1gC~ t !/2#M ~ t !2~lg/6!M3~ t !1lH/kBT,

~4a!

C~ t !5
1

~2p!d E Ck~ t,t !ddk,

Ck~ t,t !52exp@22l~r 1k2!t#/~r 1k2!. ~4b!

Here Ck(t,t) are correlators,M (t)5^fk(t)& is magnetiza-
tion, fk(t) are the Fourier components off(x,t).

We now apply the general technique of renormalizat
group to the hysteresis scaling. First, we may introduc
new variable,

R~ t !5r 1
g

2
C~ t !1

g

6
M2~ t !. ~5!

Therefore, Eq.~4a! becomes the following equation if we s
l51:

d

dt
M ~ t !52R~ t !M ~ t !1H/kBT. ~6!

FIG. 1. Scaling of the areas of hysteresis loops with respec
the sweeping rates at critical temperature. The inset shows the
teresis loops for 2D (h50.0001), 3D (h50.001), and 4D (h
50.01) Ising models. MF approximation (h50.0005) is plotted as
a dashed line.
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In the coarse-grain procedure in the momentum space,
can eliminate the evolving modes which are governed
L/L,k,L(L.1, L is the cutoff parameter! in Eqs.~4! by
calculating the integral in Eq.~4b!. Subsequently, no new
correlations appear in Eq.~6! after this procedure, except th
adjustment of the coefficientg in Eq. ~5!.

Then we carry the scale transformation:k→k85L21k,x
→x85L21x with L the rescale factor. We assume the qua
equilibrium growth of magnetic domain under a slow var
ing external field (h→0), the renormalization transforma
tion of the order parameter may become

f85Lb/nf, fk85Ld/21b/nfk .

We also assume that the system has been initialized
M51 at t50 and is allowed to develop in a time-depende
external fieldH(t)52ht. If we rescale time as

t→t85L2zt,

the renormalization transformation of the bulk variables w
obey the following relations:

M 8~r 8,h8,t8,L8!5Lb/nM ~r ,h,t,L !,
~7a!

Ck8~ t8!5Ld1b/nCk~ t !, C8~ t8!5L2b/nC~ t !

If the Hamiltonian ~1! and equation of motion~6! remain
unchanged, we can get the following recursive relations:

R8~ t8!5LzR~ t !,

r 85L1/nr , T85L21/nT,

g85L2~z12b/n!g,

h85L~2z1b/n21/n!h. ~7b!

Therefore we get the renormalization transformation forh,

h→h85L2z1b/n21/nh. ~8!

The area of hysteresis loop due to a swept cycle ofH has the
following finite-size scaling:

A5 R MdH

52L2b/nhxE M (rL 1/n),L2z1b/n21/nh,L2zt)dt

5Lz2b/nhÃ(rL 1/n,L2z1n/n21/nh), ~9a!

where Ã a universal function. At the critical temperaturer
50, we should have the relationship between the hyster
in two systems with sizeL andL8,

A5Lz2b/nhA8~L2z1b/n21/nh!. ~9b!

Given a fixed sweeping rateh, the rescale factor can be cho
sen asL5h21/(2z1b/n21/n). Equation~9b! will yield

to
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A;hb, b512
z2b/n

2z1b/n21/n
. ~10!

Here we get a simple power-law scaling relation betweeA
and h at T5Tc , with another dynamical exponentb51
2(z2b/n)/(2z1b/n21/n). Therefore, we have the un
versal relation for the static and dynamical critical exp
nents: (zn12b21)/(2zn1b21)5b. Now the scaling ex-
ponent b is an intrinsic parameter reflecting the critic
dynamics.

According to Eq.~10!, the dynamical exponentz can be
determined by a scaling of macroscopic response of o
parameter to a linearly driven field. To demonstrate the
lidity of such method, we study the spin-1

2 Ising models on
two-dimensional~2D!, three-dimensional~3D!, and four-
dimensional~4D! supercubic lattices.

Now we consider a system ofN Ising spins with ferro-
magnetic interaction. The Hamiltonian of this system
given by

HIsing52K(
^ i , j &

SiSj2H8~ t !(
i

Si , ~11!

where the spin variables are represented by$Si% with
Si561; ^ i , j & is the sum extending over all neares
neighbor spins,H8(t)5H(t)/kBT is a linearly swept mag-
netic field, T is the temperature of the spin system,K
5J/kBT.0 is the reduced coupling,Kc50.44 069,
0.22 166, and 0.14 966 for 2D, 3D, and 4D Ising mode
respectively@19,20#. The dynamics of Eq.~11! is simulated
by the Metropolis single-spin-flip MC algorithm, which ha
been found to be consistent with Langevin dynamics
scribed by Eq.~2! @2#. To produce a hysteresis loop, the fie
H(t)5H02ht is applied to the system with all spins up an
thenH(t)52H01ht is applied to the same system with a
spins down.H0 is the amplitude of magnetic field. Contrar
to hysteresis studies on the same systems under a smal
plitude cosine field by Acharyya and Chakrabarti@14#, we
use linear field with large amplitude@21#, and find thatH0
does not affect hysteresis. Detail results have been publis
elsewhere@21#. The observation timet is measured in MC
step per site~MCS!, corresponding to all spins update. Th

magnetizationM (t)5N21( i 51
N

Si(t). A5rMdH is aver-

aged over variousH0 .

TABLE I. Numerical results of the hysteresis scaling expone
b. The Ising systems with increasing sizes are denoted as asce
order. From 1 to 4,L550, 100, 200, 400 (d52), L510,20,40,60
(d53), andL510,20,30,40 (d54), respectively.

d52 d53 d54 MF

Exponentb

1 0.4160.01 0.5060.01 0.66160.005
2 0.4160.01 0.49660.005 0.66360.005 0.667
3 0.41060.008 0.49560.005 0.66560.004
4 0.40860.008 0.49560.005 0.66660.004

z 2.13760.008 2.02060.005 2.00060.005 2
-
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-

,

-
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Figure 1 is the relations betweenA and h. Though we
simulated not very large Ising systems, we have found
good power-law relation between the areas of hyster
loops and the sweeping rates. The scaling exponentsb given
by Fig. 1 areb50.40860.008, 0.49560.005, and 0.666
60.004 for 2D, 3D, and 4D Ising models respectively. Tab
I lists the dynamical exponents obtained from hystere
scaling ford-dimensional Ising models with different size
The kinetic Ising model is also studied using mean-fie
~MF! approximation. The equation of motion for magnetiz
tion is given by@2#

M ~ t !/dt52M ~ t !1 tanh$K@M ~ t !1H~ t !#%. ~12!

At MF critical temperatureKc5J/kBTc51, the hysteresis
loop is obtained by solving the differential equation nume
cally. The scaling exponent at MF approximation isb> 2

3. For
4D Ising model and in MF approximation,z are consistent
with exact results with high accuracy.

Figure 2 shows the finite-size scaling forA, in small Ising
systems. The scaling functionÃ at r 50 in Eqs.~9a! is uni-
versal: Ã(x);xb21. The dynamical critical exponents ca
also be determined, the results are consistent withz listed in
Table I.

In conclusion, scaling for hysteresis with respect to t
sweeping rate of a linear driving field is studied b
renormalization-group theory. The exponent in a power-l
scaling relation is found to connect with the static and d
namical exponents of a scalar model. The universality of t
scaling is demonstrated by MC simulation in neare
neighbor Ising models. Using the scaling relation, we obt
a method to evaluate the critical dynamical exponentsz in
2D, 3D, and 4D Ising models. Compared with other me
ods, the method we propose is effective and can be test
experimentally. Moreover, such methods can be extende
determinez of other complex systems, for example, spins
Sierpinski Carpet@7,8#, and the N-vector model in the
large-N limit @15#. We hope this method may be confirme
by experiments. To avoid avalanche jump and Barkhau
effect during hysteresis, high quality samples, for example
ferromagnet, which has a single domain and is free fr
defects, is needed.

FIG. 2. Finite-size scaling for loop areas, in 2D and 3D Isi
models. The fits are negative power-law functions.
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